



## Dietary reconstruction of the Iron Age population at the Fantzuyuan site, Taiwan, revealed by isotopic analysis on human and faunal bone collagen



Cheng-Yi Lee <sup>a,c,\*</sup>, Maa-Ling Chen <sup>b</sup>, Peter Ditchfield <sup>a</sup>, A. Mark Pollard <sup>a</sup>, Li-Hung Lin <sup>c</sup>, Pei-Ling Wang <sup>d</sup>, Hsiu-Man Lin <sup>e</sup>, Ching-Hua Lo <sup>c</sup>, Hsi-Kuei Tsai <sup>f</sup>

<sup>a</sup> Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK

<sup>b</sup> Department of Anthropology, National Taiwan University, Taipei 10617, Taiwan

<sup>c</sup> Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan

<sup>d</sup> Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan

<sup>e</sup> National Museum of Prehistory, Taitung 95060, Taiwan

<sup>f</sup> College of Medicine, National Taiwan University, Taipei 10617, Taiwan

### ARTICLE INFO

#### Article history:

Received 5 September 2016

Received in revised form 3 January 2017

Accepted 6 January 2017

Available online 19 January 2017

#### Keywords:

Iron Age Taiwan

Isotopic dietary study

Human mobility

Social structure

### ABSTRACT

In this study, we analyzed the carbon and nitrogen stable isotopic composition of human bone collagen in 33 individuals found at the Fantzuyuan site in Taiwan in order to investigate the dietary patterns of this Iron Age group. Forty-three faunal collagen samples were also analyzed to ascertain the variability of baseline isotopic signatures in the area. Mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of  $-12.5 \pm 0.7\text{‰}$  and  $8.1 \pm 0.5\text{‰}$ , respectively, were found in 26 human individuals. In conjunction with archaeological evidence, this study showed that human diet at this site derived mainly from terrestrial animals, with a minor component derived from marine shellfish. No significant difference in isotopic compositions was detected between male and female adults or between adults and juveniles. However, six individuals had dietary patterns that were different from others, which probably reveals that they had special social status and/or non-local origins.

© 2017 Elsevier Ltd. All rights reserved.

### 1. Introduction

The Iron Age (2000–400 cal. yr BP, Liu, 1999) in Taiwan witnessed the development of complex societies and the construction of dynamic trading networks. During this period, Taiwan was occupied by several regional cultural groups, one of which was the Fantzuyuan (hereafter FTY) cultural group. Archaeological sites belonging to the FTY culture are distributed along the foothills of Houli and Dadu tablelands, as well as over the basins and coastal plains of central Taiwan (Fig. 1), a pivotal region connecting northern and southern Taiwan (Ho, 2003; Liu, 1999). Therefore, investigating social structure and human mobility of the FTY culture can contribute to an increased understanding of material flow, agricultural spread, and relationships between different prehistoric groups both within Taiwan and between Taiwan and adjacent regions.

The FTY culture is characterized by gray-black pottery, iron tools, and foreign trade items, such as glass beads, porcelain, and fired clay artifacts. Based on these findings, it is suggested that the FTY culture may have played an important role in ancient trading networks. For example, iron tools produced in northern Taiwan, as evidenced by iron

smelting workshops and large amounts of iron slag (Liu, 2002), appear to have been exchanged and moved through central Taiwan to southern and inland regions (Ho and Yan, 2009). The finding of foreign items also leads to the suggestion of that there was interaction with China or Southeast Asia (Ho and Yan, 2009). With such a context, some scholars suggest that non-locals may have moved or migrated by following material flow to the FTY community (Ho and Yan, 2009). One possible source of evidence for this is that most individuals buried in the FTY culture sites did not have any of their teeth removed. However, one individual buried at the FTY site and another buried at the Luliao site did (Ho et al., 2007; Song, 1962). This feature could imply the special status or non-local origins of these two individuals in the FTY community, though the meaning of the dental extraction remains unclear (Ho et al., 2007). At the FTY site, for example, the location of the teeth ablation of M15 was not in accordance with the typical type, i.e. 21<sup>2</sup>2C type, found in Taiwan (Chiu, 2010). As a result, it cannot be precluded that the teeth were ablated naturally. If this was the case, then there would not be enough evidence to infer that M15 was a non-local individual.

Another important feature of the FTY culture is extended prone burials, and males were buried with their hands placed over their pelvis, while the females and children were buried with both of their arms placed straight by their side (Ho, 1996, 2003). Moreover, certain burials were found with pottery covering the faces of the deceased, for example

\* Corresponding author.

E-mail address: [se2plee@gmail.com](mailto:se2plee@gmail.com) (C.-Y. Lee).



**Fig. 1.** Archaeological sites relevant to the FTY culture, including Fantzuyuan (FTY), Matoulu (MTL), Qingshui (QS), Longquancun (LQC), Huilai (HL), Luliao (LL), and Nanshikeng (NSK).

one burial at the Matoulu site and two burials at the Huilai site (Ho, 2003; Shih and Song, 1956), probably reflecting special funeral rituals for individuals of high social status (Ho, 2003). These findings lead to the suggestion of that the FTY culture may have been socially differentiated and that males and females/children were treated in different ways.

Except for evidences from burial context and artifact remains, reconstruction and comparison of dietary patterns within a population could provide another line of evidence for social structure and human mobility in FTY culture. One of the methods used to reveal information on paleodietary patterns is stable carbon and nitrogen isotopic analysis applied to human bone collagen (Katzenberg, 2008; Lee-Thorp, 2008). This technique may be able to reveal a pattern of food consumption for an individual over a long period of time, and it has been used to reflect the ways in which members of different social status, gender, and age groups access food (e.g. Ambrose et al., 2003; Kinaston et al., 2013c; Valentin et al., 2006). It may also be possible to detect non-locals whose original diets differed from the dietary patterns of a majority group (e.g. Pollard et al., 2011). Although this technique has been applied widely to reconstruct subsistence activities of ancient groups or specific individuals all over the world, it has not been applied much to Taiwanese archaeological bone remains.

This study presents the application of stable carbon and nitrogen isotopic analysis to human and faunal bones excavated from the FTY site in central Taiwan. The aim of this study was to obtain information on

dietary pattern and potential dietary differences between individuals in this Iron Age cultural group. The human skeletons buried at the FTY site were chosen as the material for isotopic analysis because of the large number of burials found at this site (up to 32 burials). Such a large assemblage provides a good opportunity to reconstruct dietary patterns of the FTY culture, to pinpoint potential immigrants, and to understand the social structure by comparing the diets between genders and among different age groups.

### 1.1. Study site - the Fantzuyuan site

The FTY site, at an altitude of 70 m above mean sea level, is located in the northwest region of the Houli tableland (Fig. 1). The FTY site faces the Daan River on the north and the alluvial plain of the Daan River on the west. The distance from the FTY site to the modern coast is approximately six kilometers. After one human skull and one shell midden were found unexpectedly in 1955 by Dr. Chao-Chi Lin of the Department of Geology, National Taiwan University (NTU), several excavations were undertaken at the FTY site in 1955, 1957, 1961, and 1964. These excavations were led by Dr. Chang-Ju Shih and Dr. Wen-Hsun Song of the Department of Archaeology and Anthropology of NTU.

From the surface downwards, the strata of the FTY site consisted of a gray soil layer, a brown soil layer, and a gravel layer (Shih and Song, 1956; Song, 1962). Shell middens of small size and various shell remains were found at this site. There was also abundant pottery but few stone tools. Other important findings included iron knives, glass bracelets, and 32 burials. Only the context of 16 burials (M1–M16), which were unearthed mainly in gray and brown soil, has been published (Table 1). The 16 individuals included eight male adults, two female adults, three adults with unknown gender, two juveniles, and one individual with unknown information (Ho, 1996). All were interred in extended prone position oriented toward the southeast with no burial goods or coffin pit (Shih and Song, 1956; Song, 1962). No specific data for the burials have been reported so far, but based on pottery characteristics, cultural stratum, and one <sup>14</sup>C dating from shell, the site age is estimated to be between 2000 and 400 cal. yr BP (Liu, 1999).

### 1.2. Archaeological evidence for the paleodiet of the FTY culture

Remains of food uncovered from the FTY site included the bones of deer (*Cervus* sp.), muntjac (*Muntiacus reevesi*), pig (*Sus* sp.), turtle, and fish (Shih and Song, 1956). In addition, twelve species of shellfish have been identified in the FTY middens, of which the most common are Pacific oyster (*Crassostrea gigas*), followed by *Melanoides crenulatus* and *Venerupis variegata* (Shih and Song, 1956). No plant remains have been found at the FTY site so far, limiting our ability to understand which plant foods were consumed as part of the human diet at this site. However, artifacts at this site, such as saddle-shaped stone knives, do provide evidence for plant harvesting (Shih and Song, 1956).

Faunal remains were found at the Luliao site as well, consisting of sika deer (*Cervus nippon taiouanus*), muntjacs (*Muntiacus reevesi*), wild pigs, goats (*Capra* sp.), badgers (*Meles meles*), rats, birds, fish and various shellfish (Ho et al., 2007). The faunal remains found at the Huilai site are dominated by *Cervus* sp., accompanied by muntjacs, pigs, rats, turtles, fish and birds. Some of the fish remains were identified as catfish (*Siluriformes*), a kind of freshwater fish (Ho and Chu, 2007). Plant remains unearthed at the Huilai site include *Zingiberaceae* and *Pandanaceae*, as well as rice grains (Ho and Chu, 2007). Moreover, harvesting tools, such as saddle-shaped stone knives and stone hoes, hunting tools, such as stone arrowheads, and knives for meat and animal bone processing, were found from Huilai (Ho, 2003). Based on these findings, it was assumed that the FTY cultural group practiced hunting, gathering, and maybe rice cultivation (Ho and Chu, 2007).

**Table 1**

Information of the burials excavated in 1955, 1957, 1961, and 1964 respectively.

| Burial no. | Gender  | Age-to-death          | Burial context                                                                                                                                                                                                                                                                                           | References           |
|------------|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| M1         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of gray soil layer.</li> <li>- Four limbs were remained and preserved well; others were lost virtually.</li> </ul>                                                                                                                     | Shih and Song (1956) |
| M2         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of brown soil layer.</li> <li>- The skeleton was well preserved and intact, only pelvis was destroyed. Lower part of both lower limbs was lost due to intrusion of M1.</li> </ul>                                                      | Shih and Song (1956) |
| M3         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Wooden coffin (?) or wooden burial good (?)</li> <li>- Buried in the upper part of brown soil layer.</li> <li>- Most of skeleton were remained and preserved well, but left radius and ulna were lost. Ischium and vertebrae were decayed.</li> </ul>           | Song (1962)          |
| M4         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the upper part of gray soil layer.</li> <li>- Only parts of skull and limbs were remained. Others were lost virtually.</li> </ul>                                                                                                                     | Song (1962)          |
| M5         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Buried in brown soil layer.</li> <li>- Only parts of skull and limbs were remained.</li> </ul>                                                                                                                                                                  | Song (1962)          |
| M6         | Male    | Adult                 | <ul style="list-style-type: none"> <li>- More than 20 sherd were found in the soil around individual's face</li> <li>- Buried in gravel layer.</li> <li>- Most of skeleton were remained, but lower part of right upper limb was lost. Both lower limbs were preserved well, others were not.</li> </ul> | Song (1962)          |
| M7         | Unknown | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of gray soil layer.</li> <li>- Only vertebrae, pelvis, both lower limbs and parts of skull and ribs were remained.</li> </ul>                                                                                                          | Song (1962)          |
| M8         | Unknown | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of brown soil layer.</li> <li>- Only the skeleton above waist, parts of upper limbs and foot bones were remained due to an intruded pit.</li> </ul>                                                                                    | Song (1962)          |
| M9         | Unknown | Adult                 | <ul style="list-style-type: none"> <li>- Buried in between gray and brown soil layer.</li> <li>- Only parts of lower limbs were remained, others were lost due to an intruded pit.</li> </ul>                                                                                                            | Song (1962)          |
| M10        | Unknown | Unknown               | <ul style="list-style-type: none"> <li>- Buried in brown soil layer.</li> <li>- Only skull fragments were remained.</li> </ul>                                                                                                                                                                           | Song (1962)          |
| M11        | Unknown | Juvenile (ages 6)     | <ul style="list-style-type: none"> <li>- Buried in gravel layer</li> <li>- Skull was crushed. Only parts of four limbs were remained due to an intruded pit.</li> </ul>                                                                                                                                  | Song (1962)          |
| M12        | Female  | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of gray soil layer.</li> <li>- Most of skeleton were remained, but left femur was lost.</li> </ul>                                                                                                                                     | Song (1962)          |
| M13        | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Buried in brown soil layer.</li> <li>- Most of skeleton were remained, but parts of skull, ribs and vertebrae and whole right upper limb were lost due to an intruded pit.</li> </ul>                                                                           | Song (1962)          |
| M14        | Unknown | Juvenile              | <ul style="list-style-type: none"> <li>- Buried in brown soil layer.</li> <li>- Most skeleton were remained, but parts of limbs was lost.</li> </ul>                                                                                                                                                     | Song (1962)          |
| M15        | Female  | Adult                 | <ul style="list-style-type: none"> <li>- Buried in the lower part of brown soil layer.</li> <li>- Most of skeleton were remained and preserved well.</li> </ul>                                                                                                                                          | Song (1962)          |
| M16        | Male    | Adult                 | <ul style="list-style-type: none"> <li>- Tooth ablation behavior: both M1 s and left M2 on mandible were removed.</li> <li>- Buried in the lower part of brown soil layer.</li> <li>- Most of skeleton were remained and preserved well.</li> </ul>                                                      | Song (1962)          |
| M17        | Male    | Adult (ages > 20)     | No data                                                                                                                                                                                                                                                                                                  |                      |
| M18        | Male    | Adult (ages 30–39)    | No data                                                                                                                                                                                                                                                                                                  |                      |
| M19        | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| M20        | Unknown | Juvenile (ages 1–2)   | No data                                                                                                                                                                                                                                                                                                  |                      |
| M21-1      | Unknown | Adult (ages > 20)     | No data                                                                                                                                                                                                                                                                                                  |                      |
| M21-2      | Unknown | Adult (ages 35–44)    | No data                                                                                                                                                                                                                                                                                                  |                      |
| M22        | Unknown | Juvenile (ages 2.5–3) | No data                                                                                                                                                                                                                                                                                                  |                      |
| M23        | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| M24        | Male    | Adult (ages 22–26)    | No data                                                                                                                                                                                                                                                                                                  |                      |
| M25        | Unknown | Juvenile (ages 5–9)   | No data                                                                                                                                                                                                                                                                                                  |                      |
| M26        | Unknown | Adult (ages > 20)     | No data                                                                                                                                                                                                                                                                                                  |                      |
| B1         | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| B3         | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| B4         | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| B5         | Unknown | Unknown               | No data                                                                                                                                                                                                                                                                                                  |                      |
| B6         | Unknown | Juvenile (ages 3)     | No data                                                                                                                                                                                                                                                                                                  |                      |

## 2. Analytical materials and methods

### 2.1. Sample selection

Altogether, 32 human individuals were recovered from the excavations conducted during the 1950s and 1960s. The

information of the age at death and the gender for individuals M1–M16 is provided by Ho (1996). The other individuals were re-examined, and their age at death and gender were determined by Dr. Yun-Ysi Siew of Academic Sinica in 2016. In addition to this, three more individuals were identified during the examination (Table 2).

**Table 2**

Other possible individuals that were identified during the re-examination of FZY human bones in 2016.

| Sample no. | Gender  | Age-to-death | Preservation condition   |
|------------|---------|--------------|--------------------------|
| E01c - 2   | Unknown | Unknown      | Only one skull remained  |
| E01e - 2   | Unknown | Unknown      | Only one skull remained  |
| E01e - 3   | Unknown | Unknown      | Only four limbs remained |

Except for skeletons M10 and M16, bone samples from the other individuals were collected for carbon and nitrogen isotopic analyses. One to four bone samples were collected from each individual. In total, 62 human bone samples belonging to 33 individuals were included in this study.

In order to provide an isotopic reference baseline for the human data, 43 faunal bone samples, including 24 cervids, 13 pigs, four muntjacs, and two fish, were also collected. Preferentially mandible or maxilla bones were sampled to reduce the risk of duplicate samplings of the same individual. If they were not available, other bone types were used (Table 3). We selected bone samples from different excavation areas to ensure that the samples came from different individuals.

## 2.2. Bone collagen extraction

All samples were prepared according to a modified Longin method as described in Pollard et al. (2011). To summarize, samples were cleaned with the aid of a diamond-studded drill bit to remove surface contaminations. Surface-cleaned samples of c. 200–500 mg were crushed manually in pestle and mortar and placed in 0.5 M HCl at 4 °C for several days. Once fully demineralized, samples were rinsed to neutrality with ultrapure water. HCl was added to give a pH of 3, and samples were gelatinized in sealed tubes at 75 °C for 48 h. Residues were filtered through Ezee™ filters and the supernatant liquid was freeze dried. Upon removal from the freeze drier, the samples were weighed to calculate collagen yield.

To assess the sample quality and to calculate the sample amount for isotope analysis, carbon content (%C), nitrogen content (%N), and carbon-to-nitrogen (C/N) molar ratio were determined by using an elemental analyzer (EA) at the Institute of Oceanography, NTU, before isotope analysis.

## 2.3. Isotopic analysis

Collagen samples of approximately 1.0 mg were weighed into tin capsules and analyzed for  $\delta^{13}\text{C}_{\text{VPDB}}$  and  $\delta^{15}\text{N}_{\text{AIR}}$  on an automated

**Table 3**

Fauna bone collagen samples with information on faunal species, collagen yield, C and N contents, and isotopic data.

| Species    | Sample no. | Skeletal element | Collagen yield (%) | % N   | % C   | C/N atom | $\delta^{13}\text{C}$ in ‰ vs. VPDB | $\delta^{15}\text{N}$ in ‰ vs. AIR |
|------------|------------|------------------|--------------------|-------|-------|----------|-------------------------------------|------------------------------------|
| Cervus sp. | E01h-3     | Humerus          | 4.1                | 14.99 | 42.68 | 3.3      | -13.7                               | 4.1                                |
| Cervus sp. | E01h-4     | Radius           | 7.3                | 14.76 | 39.96 | 3.2      | -16.3                               | 5.1                                |
| Cervus sp. | E01h-6     | Maxilla          | 6.5                | 16.43 | 43.37 | 3.1      | -6.9                                | 1.6                                |
| Cervus sp. | E01h-8     | Humerus          | 8.3                | 14.90 | 39.58 | 3.1      | -11.9                               | 3.4                                |
| Cervus sp. | E01h-9     | Maxilla          | 5.5                | 14.79 | 39.66 | 3.1      | -9.6                                | 3.9                                |
| Cervus sp. | E01h-11    | Pelvis           | 2.2                | 15.17 | 41.29 | 3.2      | -10.8                               | 4.0                                |
| Cervus sp. | E01h-16    | Limb             | 8.6                | 16.55 | 44.39 | 3.1      | -11.0                               | 2.3                                |
| Cervus sp. | E01h-18    | Maxilla          | 12.7               | 14.13 | 37.06 | 3.1      | -14.1                               | 5.0                                |
| Cervus sp. | E01h-20    | Humerus          | 1.6                | 15.07 | 42.85 | 3.3      | -12.5                               | 4.7                                |
| Cervus sp. | E01h-21    | Limb             | 10.5               | 17.68 | 45.65 | 3.0      | -14.4                               | 3.4                                |
| Cervus sp. | E01h-22    | Humerus          | 12.2               | 16.93 | 44.44 | 3.1      | -10.5                               | 2.7                                |
| Cervus sp. | E01h-23    | Scapula          | 1.6                | 14.94 | 43.09 | 3.4      | -15.0                               | 4.3                                |
| Cervus sp. | E01h-24    | Limb             | 3.0                | 17.36 | 46.32 | 3.1      | -17.9                               | 2.7                                |
| Cervus sp. | E01h-26    | Pelvis           | 4.2                | 15.72 | 42.10 | 3.1      | -14.5                               | 6.1                                |
| Cervus sp. | E01h-27    | Limb             | 10.8               | 17.08 | 45.02 | 3.1      | -14.1                               | 3.4                                |
| Cervus sp. | E01h-30    | Limb             | 3.2                | 16.52 | 44.37 | 3.1      | -8.8                                | 5.5                                |
| Cervus sp. | E01h-31    | Maxilla          | 6.0                | 15.96 | 42.90 | 3.1      | -15.2                               | 4.0                                |
| Cervus sp. | E01h-35    | Pelvis           | 5.5                | 14.34 | 38.96 | 3.2      | -7.1                                | 5.1                                |
| Cervus sp. | E01h-36    | Scapula          | 2.3                | 14.70 | 40.20 | 3.2      | -11.1                               | 4.9                                |
| Cervus sp. | E01h-37    | Limb             | 2.9                | 15.59 | 42.13 | 3.2      | -10.8                               | 3.4                                |
| Cervus sp. | E01h-41    | Limb             | 4.5                | 16.84 | 44.75 | 3.1      | -8.6                                | 4.3                                |
| Cervus sp. | E01h-42    | Scapula          | 4.9                | 15.96 | 42.64 | 3.1      | -11.1                               | 5.3                                |
| Cervus sp. | E02j-3     | Limb             | 10.5               | 14.75 | 40.52 | 3.2      | -13.9                               | 2.9                                |
| Cervus sp. | E03l-1     | Limb             | 7.5                | 14.11 | 39.85 | 3.3      | -10.2                               | 3.0                                |
| Pig        | E01h-1     | Rib              | 3.3                | 13.16 | 36.23 | 3.2      | -12.3                               | 4.0                                |
| Pig        | E01h-2     | Maxilla          | 2.6                | 13.03 | 37.76 | 3.4      | -15.8                               | 6.5                                |
| Pig        | E01h-5     | Mandible         | 5.8                | 14.65 | 38.68 | 3.1      | -12.6                               | 6.8                                |
| Pig        | E01h-7     | Maxilla          | 5.2                | 14.66 | 39.25 | 3.1      | -18.4                               | 6.8                                |
| Pig        | E01h-10    | Vertebra         | 3.5                | 16.05 | 43.60 | 3.2      | -13.7                               | 5.2                                |
| Pig        | E01h-13    | Scapula          | 8.2                | 14.49 | 38.61 | 3.1      | -13.7                               | 6.3                                |
| Pig        | E01h-15    | Mandible         | 7.3                | 15.91 | 42.57 | 3.1      | -18.6                               | 4.1                                |
| Pig        | E01h-17    | Maxilla          | 9.6                | 15.62 | 41.52 | 3.1      | -16.4                               | 4.7                                |
| Pig        | E01h-38    | Mandible         | 6.1                | 16.12 | 45.13 | 3.3      | -17.0                               | 8.5                                |
| Pig        | E01h-39    | Humerus          | 2.9                | 16.96 | 45.18 | 3.1      | -14.4                               | 6.1                                |
| Pig        | E01h-25    | Maxilla          | 4.5                | 15.88 | 42.27 | 3.1      | -14.4                               | 7.1                                |
| Pig        | E01h-32    | Maxilla          | 6.8                | 16.83 | 45.41 | 3.1      | -14.6                               | 7.1                                |
| Pig        | E01h-34    | Vertebra         | 11.4               | 16.19 | 42.30 | 3.0      | -9.3                                | 3.4                                |
| Muntjac    | E01h-12    | Scapula          | 10.0               | 16.87 | 44.20 | 3.1      | -18.5                               | 4.4                                |
| Muntjac    | E01h-14    | Maxilla          | 6.1                | 15.56 | 41.17 | 3.1      | -20.8                               | 3.0                                |
| Muntjac    | E01h-28    | Maxilla          | 13.4               | 16.14 | 42.04 | 3.0      | -21.0                               | 5.1                                |
| Muntjac    | E01h-40    | Maxilla          | 4.6                | 15.89 | 42.74 | 3.1      | -21.9                               | 5.9                                |
| Fish       | E01h-19    | Fishbone         | 3.2                | 15.15 | 42.60 | 3.3      | -11.4                               | 10.7                               |
| Fish       | E01h-33    | Spine            | 11.9               | 16.88 | 43.47 | 3.0      | -8.6                                | 12.8                               |

elemental analyzer coupled to a Thermo Finnigan MAT 253 isotope ratio mass spectrometer at the Department of Geosciences, NTU. Carbon and nitrogen isotopic values were calibrated against an in-house casein standard ( $\delta^{13}\text{C} = -27.0\text{‰}$ ;  $\delta^{15}\text{N} = 5.9\text{‰}$ ). During the time of analysis, replicate analysis of the in-house casein standard yielded a mean  $\delta^{13}\text{C}$  value of  $-27.3 \pm 0.1\text{‰}$  and a mean  $\delta^{15}\text{N}$  value of  $5.9 \pm 0.1\text{‰}$  ( $1\sigma$ ,  $n = 28$ ).

#### 2.4. Statistical analysis

Descriptive statistics (means and standard deviations) were computed for the human data and for each faunal group. Quartiles and interquartile ranges were used to recognize outliers. The dataset did not fulfill the conditions for the application of parametric statistical tests (sample sizes, equality of variances) and had other properties (presence

**Table 4**

Human bone collagen samples with information on skeletal element, collagen yield, C and N contents, and isotopic data. Ps. Boldface indicates poor persevered samples.

| Skeleton no. | Sample no.    | Skeletal element | Collagen yield (%) | % N         | % C          | C/N atom   | $\delta^{13}\text{C}$ in ‰ vs. VPDB | $\delta^{15}\text{N}$ in ‰ vs. AIR |
|--------------|---------------|------------------|--------------------|-------------|--------------|------------|-------------------------------------|------------------------------------|
| M1           | E011-2        | Rib              | 7.4                | 14.72       | 40.51        | 3.2        | -12.2                               | 8.3                                |
|              | E011-2        | Fibula           | 7.4                | 14.14       | 38.09        | 3.1        | -12.0                               | 8.6                                |
|              | E011-3        | Phalange         | 6.1                | 13.86       | 37.12        | 3.1        | -11.7                               | 8.5                                |
|              | E011-1        | Rib              | 4.5                | 14.07       | 37.74        | 3.1        | -12.0                               | 8.8                                |
| M2           | E01m-1        | Sternum          | 6.9                | 12.88       | 35.91        | 3.3        | -12.3                               | 8.7                                |
|              | E01m-2        | Limb             | 7.4                | 15.03       | 42.24        | 3.3        | -12.6                               | 8.1                                |
| M3           | E03i-1        | Skull            | 14.6               | 12.09       | 33.68        | 3.3        | -12.0                               | 8.1                                |
|              | E02b-2        | Scapula          | 11.1               | 11.92       | 33.09        | 3.2        | -11.9                               | 8.3                                |
|              | <b>E02b-1</b> | <b>Phalange</b>  | 1.0                | <b>8.18</b> | <b>24.44</b> | 3.5        | -12.1                               | 8.8                                |
| M4           | E02c-1        | Rib              | 3.1                | 13.32       | 39.04        | 3.4        | -15.5                               | 9.8                                |
|              | E02c-2        | Clavicle         | 5.3                | 14.12       | 39.38        | 3.3        | -15.5                               | 9.4                                |
| M5           | E02c-3        | Femur            | 5.7                | 14.43       | 39.64        | 3.2        | -12.0                               | 8.5                                |
| M6           | E02h-1        | Tibia            | 11.3               | 13.53       | 36.57        | 3.2        | -12.1                               | 8.6                                |
|              | E02g-2        | Scapula          | 4.1                | 13.66       | 36.81        | 3.1        | -12.4                               | 8.2                                |
|              | E02g-1        | Phalange         | 4.3                | 12.68       | 33.61        | 3.1        | -12.2                               | 8.5                                |
| M7           | E02i-1        | Fibula           | 1.7                | 12.61       | 34.54        | 3.2        | -13.7                               | 7.8                                |
|              | E02i-2        | Fibula           | 5.0                | 11.19       | 30.68        | 3.2        | -13.4                               | 7.4                                |
| M8           | E02j-1        | Phalange         | 13.0               | 14.53       | 39.55        | 3.2        | -12.4                               | 7.8                                |
|              | E02j-2        | Limb             | 15.9               | 14.90       | 39.92        | 3.1        | -12.1                               | 7.4                                |
| M9           | E01c-1        | Limb             | 7.6                | 13.79       | 38.09        | 3.2        | -10.7                               | 8.9                                |
|              | E01c-3        | Metatarsal       | 8.0                | 14.28       | 39.58        | 3.2        | -10.9                               | 8.1                                |
| M11          | E03i-4        | Skull            | 6.4                | 13.18       | 36.52        | 3.2        | -13.2                               | 7.8                                |
|              | E02a-1        | Fibula           | 2.5                | 13.90       | 38.04        | 3.2        | -13.3                               | 6.9                                |
|              | E02a-2        | Phalange         | 4.7                | 13.71       | 36.18        | 3.1        | -14.1                               | 7.2                                |
| M12          | E02l-2        | Humerus          | 4.5                | 10.54       | 30.17        | 3.3        | -12.2                               | 8.2                                |
|              | E02l-2        | Fibula           | 7.7                | 11.97       | 33.34        | 3.2        | -12.4                               | 7.7                                |
|              | E02l-1        | Humerus          | 4.7                | 12.59       | 34.62        | 3.2        | -12.2                               | 8.0                                |
|              | E02l-3        | Humerus          | 3.3                | 11.12       | 30.76        | 3.2        | -12.0                               | 8.4                                |
| M13          | E02d-1        | Femur            | 3.8                | 14.47       | 41.96        | 3.4        | -13.4                               | 9.8                                |
| M14          | E02e-1        | Rib              | 9.8                | 14.66       | 39.92        | 3.2        | -10.2                               | 7.3                                |
|              | E03i-2        | Fragment         | 9.2                | 13.64       | 36.90        | 3.2        | -11.8                               | 7.8                                |
| M15          | E03b-1        | Pelvis?          | 9.7                | 12.61       | 35.53        | 3.3        | -12.5                               | 7.7                                |
|              | E03a          | Scapula          | 4.7                | 12.97       | 35.65        | 3.2        | -13.0                               | 8.0                                |
| M17          | E02e-2        | Rib              | 14.4               | 15.16       | 41.01        | 3.2        | -12.3                               | 7.8                                |
|              | E02e-3        | Vertebra         | 8.8                | 13.81       | 38.46        | 3.2        | -12.3                               | 8.3                                |
|              | E02f-1        | Clavicle         | 9.2                | 14.93       | 41.14        | 3.2        | -11.7                               | 8.1                                |
|              | E02f-2        | Humerus          | 9.5                | 13.87       | 38.75        | 3.3        | -12.6                               | 7.9                                |
| M18          | E03l-2        | Vertebra         | 9.3                | 12.06       | 34.86        | 3.4        | -20.3                               | 11.3                               |
|              | E03l-3        | Sternum          | 11.4               | 13.77       | 38.91        | 3.3        | -19.8                               | 11.0                               |
| M19          | E03e-2        | Phalange         | 13.0               | 15.09       | 40.68        | 3.1        | -12.0                               | 9.1                                |
|              | E03e-1        | Skull            | 9.9                | 14.94       | 40.13        | 3.1        | -11.5                               | 9.5                                |
| M20          | E01m-3        | Skull            | 11.8               | 13.24       | 36.37        | 3.2        | -15.0                               | 9.4                                |
| M21-1        | E03f-1        | Skull            | 7.6                | 14.92       | 41.44        | 3.2        | -12.5                               | 8.0                                |
|              | E03f-3        | Rib              | 4.6                | 13.98       | 41.21        | 3.4        | -13.4                               | 8.1                                |
| <b>M21-2</b> | <b>E03f-2</b> | <b>Skull</b>     | 1.4                | <b>8.12</b> | 31.98        | <b>4.6</b> | -14.7                               | 8.6                                |
| M22          | E01m-4        | Phalange         | 5.5                | 14.63       | 41.65        | 3.3        | -13.1                               | 8.2                                |
| M23          | E01d-1        | Scapula          | 10.3               | 14.81       | 41.04        | 3.2        | -12.5                               | 8.5                                |
| M24          | E01d-2        | Rib              | 14.2               | 12.42       | 33.75        | 3.2        | -12.2                               | 8.1                                |
|              | E03j          | Limb             | 6.5                | 14.35       | 40.25        | 3.3        | -12.8                               | 8.7                                |
| M25          | E03g-1        | Rib              | 8.5                | 12.52       | 34.50        | 3.2        | -12.8                               | 8.1                                |
|              | E03g-2        | Skull            | 11.1               | 13.13       | 35.85        | 3.2        | -12.8                               | 8.8                                |
| M26          | E02k-1        | Humerus          | 3.6                | 13.15       | 36.16        | 3.2        | -12.9                               | 8.2                                |
|              | E02k-2        | Clavicle         | 15.9               | 14.26       | 37.98        | 3.1        | -12.4                               | 8.6                                |
|              | E03i-3        | Skull            | 16.9               | 14.43       | 38.81        | 3.1        | -13.2                               | 9.1                                |
| B1           | E01c-1        | Skull            | 11.1               | 14.50       | 39.75        | 3.2        | -13.1                               | 7.9                                |
| B3           | E03d-1        | Rib              | 14.5               | 14.73       | 39.74        | 3.1        | -13.2                               | 6.3                                |
| B4           | E03d-2        | Fragment         | 9.3                | 14.95       | 40.78        | 3.2        | -12.5                               | 8.1                                |
| B5           | E03d-3        | Limb             | 6.6                | 14.49       | 40.99        | 3.3        | -12.9                               | 8.0                                |
| B6           | E01c-2        | Skull            | 21.3               | 14.11       | 40.17        | 3.3        | -19.2                               | 10.0                               |
| Unknown      | E01c-2        | Skull            | 7.4                | 14.53       | 40.22        | 3.2        | -12.8                               | 8.1                                |
| Unknown      | E01e-2        | Skull            | 8.0                | 13.63       | 38.22        | 3.3        | -13.2                               | 7.0                                |
| Unknown      | E01e-3        | Limb             | 3.5                | 12.96       | 36.24        | 3.3        | -13.0                               | 7.8                                |

of outliers, large differences in group sizes) that made it unsuitable for the application of the Student *t*-test. Therefore, the nonparametric equivalent, the Kruskal-Wallis one-way analysis (K-W test for two or more independent groups), was chosen to compare differences in  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values among age groups (adults and juveniles), genders (male adults and female adults), and faunal species. Statistical assessments were conducted using SPSS.21 for Windows.

### 3. Results

The sample information, collagen yield (%), carbon and nitrogen contents (%C and %N), and carbon and nitrogen isotopic data are given in [Tables 3 and 4](#). The isotopic data are plotted in [Figs. 2 and 3](#) as well. The collagen yields were variable, ranging from 1.0 to 21.3% (mean of  $7.4 \pm 4.0\%$ ,  $n = 105$ ). Although some researchers indicate that collagen yield is a good criterion for evaluating collagen preservation (e.g. Ambrose, 1990; van Klinken, 1999), others do not agree (e.g. Sealy et al., 2014). In this study, we evaluated collagen quality according to the carbon content (%C), nitrogen content (%N) and carbon-to-nitrogen (C/N) molar ratio rather than collagen yield.

The carbon and nitrogen content in bone collagen ranged from 30.17 to 46.32%C and from 10.54 to 17.68%N, respectively, exclusive of two human samples (E02b-1 of M3 and E03f-2 of M21-2) whose carbon or nitrogen content fell outside the range of modern bone collagen (27–47%C and 11–17%N, Ambrose, 1990; van Klinken, 1999). Hence, there was a good comparison of the weight percentages of carbon and nitrogen in collagen derived from our study with the published values. The C/N ratios of these samples fell within the acceptable range for modern bone, i.e. 2.9–3.6 (DeNiro, 1985), except for the sample E03f-2 (M21-2). In total, 103 bone (60 human and 43 faunal samples) samples yielded well-preserved collagen for isotopic analysis.

#### 3.1. Faunal isotopic data

Faunal isotopic data are presented in [Fig. 2](#) and [Table 3](#); statistical comparisons are presented in [Table 5](#). The  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values for *Cervus* sp. ranged from  $-17.9$  to  $-6.9\text{\textperthousand}$  and from  $1.6$  to  $6.1\text{\textperthousand}$ , respectively. The mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values were  $-12.1 \pm 2.9\text{\textperthousand}$  and  $4.0 \pm 1.1\text{\textperthousand}$  ( $1\sigma$ ,  $n = 24$ ), respectively. The isotope ranges of muntjacs fell between  $-21.9$  and  $-18.5\text{\textperthousand}$  for  $\delta^{13}\text{C}$  values and between  $3.0$  and  $5.9\text{\textperthousand}$  for  $\delta^{15}\text{N}$  values. These muntjacs displayed a mean  $\delta^{13}\text{C}$  value of  $-20.5 \pm 1.4\text{\textperthousand}$  and a mean  $\delta^{15}\text{N}$  value of  $4.6 \pm 1.2\text{\textperthousand}$  ( $n = 4$ ). There was no clear difference between the  $\delta^{15}\text{N}$  values of *Cervus* sp. and muntjacs ( $H = 1.179$ ,  $p = 0.277$ , [Table 5](#)). However, the  $\delta^{13}\text{C}$  values of *Cervus* sp. were higher than those of muntjacs ( $H = 9.939$ ,  $p = 0.002$ ). Combining the isotopic data of *Cervus* sp. and muntjacs produced  $\delta^{13}\text{C}$  ranges

from  $-21.9$  to  $-6.9\text{\textperthousand}$  (mean  $\delta^{13}\text{C}$  value of  $-13.3 \pm 4.0\text{\textperthousand}$ ,  $n = 28$ ) and  $\delta^{15}\text{N}$  ranges from  $1.6$  to  $6.1\text{\textperthousand}$  (mean  $\delta^{15}\text{N}$  value of  $4.1 \pm 1.1\text{\textperthousand}$ ,  $n = 28$ ), which could be considered to be the isotopic baseline for herbivores found at the FTY site.

The isotope range of the 13 pig samples was between  $-18.6$  and  $-9.3\text{\textperthousand}$  for  $\delta^{13}\text{C}$  values and between  $3.4$  and  $8.5\text{\textperthousand}$  for  $\delta^{15}\text{N}$  values. The mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values were  $-14.7 \pm 2.6\text{\textperthousand}$  and  $5.9 \pm 1.5\text{\textperthousand}$ , respectively. These pigs presented similar  $\delta^{13}\text{C}$  values but higher  $\delta^{15}\text{N}$  values compared to those of the herbivores ( $H = 2.124$ ,  $p = 0.145$  for  $\delta^{13}\text{C}$ ,  $H = 11.433$ ,  $p = 0.001$  for  $\delta^{15}\text{N}$ , [Table 5](#)).

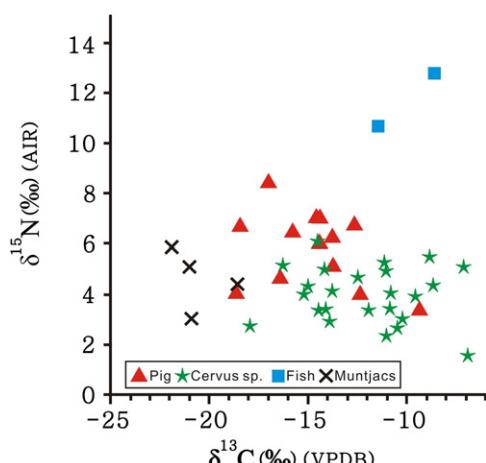
The fish samples showed relatively high  $\delta^{13}\text{C}$  values ( $-8.6$  and  $-11.4\text{\textperthousand}$ ) and had the highest  $\delta^{15}\text{N}$  values (10.7 and 12.8%) of all of the faunal samples studied here.

#### 3.2. Human isotopic data

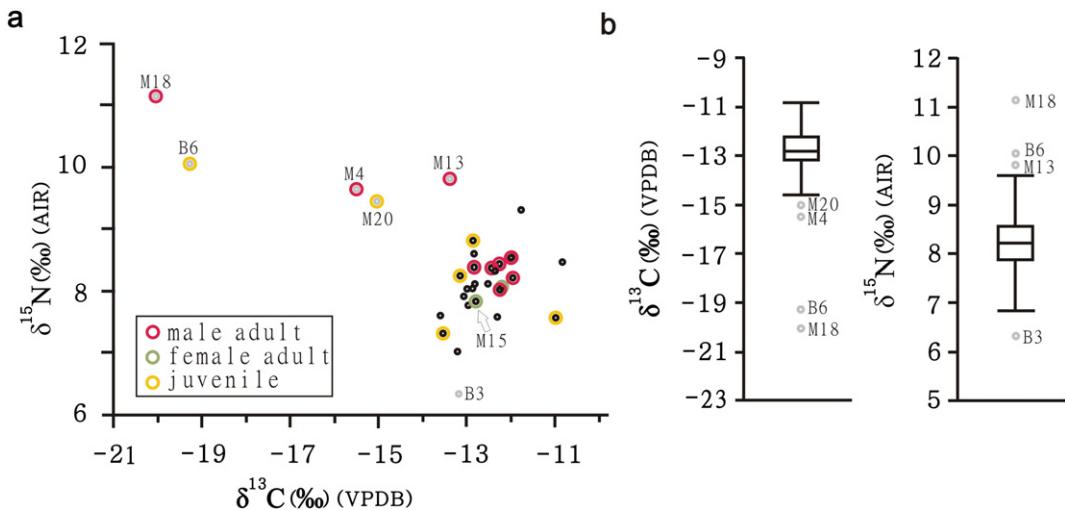
The isotopic data of human samples are shown in [Fig. 3](#) and [Table 4](#). Two samples showed poor collagen preservation, which means only 32 individuals were included in the following discussion (M21-2 was excluded). For the individuals with isotopic values derived from two or more subsamples of different skeletal elements, an average was calculated and used as the representative value. The analysis of carbon and nitrogen isotope compositions of 32 individuals resulted in  $\delta^{13}\text{C}$  values ranging from  $-20.0$  to  $-10.8\text{\textperthousand}$  and in  $\delta^{15}\text{N}$  values ranging from  $6.3$  to  $11.1\text{\textperthousand}$ . Six outliers were identified by the quartiles and interquartile range, inclusive of M4, M13, M18, M20, B3 and B6 ([Fig. 3](#)). Analysis that excluding these individuals produced smaller isotopic ranges ( $\delta^{13}\text{C}$  values fell between  $-13.6$  and  $-10.8\text{\textperthousand}$ ;  $\delta^{15}\text{N}$  values fell between  $7.0$  and  $9.3\text{\textperthousand}$ ) with a mean  $\delta^{13}\text{C}$  value of  $-12.5 \pm 0.7\text{\textperthousand}$  and a mean  $\delta^{15}\text{N}$  value of  $8.1 \pm 0.5\text{\textperthousand}$  ( $n = 26$ ).

Two of the six individuals, M18 and B6, showed much lower  $\delta^{13}\text{C}$  values while having higher  $\delta^{15}\text{N}$  values within the group, which makes their isotopic values fall near the upper left corner on the scatter plot of  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values ([Fig. 3](#)). The isotopic values of M4, M13 and M20 roughly fall in the center on the scatter plot. B3 had the lowest  $\delta^{15}\text{N}$  value of all of the human individuals studied here.

#### 3.3. Diet difference between age groups


Exclusive of the six outliers, the remaining individuals were subdivided into two subgroups, adults and juveniles. The adult group included 14 individuals, showing mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of  $-12.4 \pm 0.6\text{\textperthousand}$  and  $8.2 \pm 0.3\text{\textperthousand}$ , respectively. Four individuals were identified as juveniles. Their mean  $\delta^{13}\text{C}$  value was  $-12.6 \pm 1.0\text{\textperthousand}$ , and their  $\delta^{15}\text{N}$  value was  $8.0 \pm 0.6\text{\textperthousand}$ . No difference was found in stable isotopic values between the adult and juvenile groups ( $H = 1.034$ ,  $p = 0.309$  for  $\delta^{13}\text{C}$ ,  $H = 0.483$ ,  $p = 0.487$  for  $\delta^{15}\text{N}$ , [Table 5](#)).

#### 3.4. Diet difference between genders


The juvenile group was excluded in the comparison of male and female data. Seven male adults displayed mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of  $-12.2 \pm 0.3\text{\textperthousand}$  and  $8.4 \pm 0.2\text{\textperthousand}$ , respectively. Although both isotopic values of the two female adults were slightly lower than the mean values of the male adults, there is no significant difference between male adults and female adults in terms of the  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values ( $H = 0.105$ ,  $p = 0.293$  for  $\delta^{13}\text{C}$ ,  $H = 3.220$ ,  $p = 0.073$  for  $\delta^{15}\text{N}$ ).

### 4. Discussion

To better understand the local isotopic framework for the interpretation of the human diet, the faunal isotopic results are discussed first. The archaeological evidence inclusive of the artifacts and ecofact remains from the FTY site and other sites of the FTY culture are combined with the isotopic results in order to discuss the dietary patterns at the FTY site. Since there is no clear offset in either carbon or nitrogen isotopic



**Fig. 2.** Animal bone collagen  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values plotted by species.



**Fig. 3.** (a) Scatter plot of human bone collagen  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values. (b) Box plot. The middle line represents the median, the bottom of the box is the 25th percentile, the top of the box is the 75th percentile, and the T-bars extend to 1.5 times the height of the box. The gray dots on both panels indicate the individuals with diet different from the others.

signatures between genders (male adults and female adults) or among ages (adults and juveniles), only the isotopic difference between the six outliers and the other 26 individuals is discussed.

#### 4.1. Isotopic values from faunal remains

The  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  ranges of FTY herbivores are from  $-21.9$  to  $-6.9\text{‰}$  and from  $1.6$  to  $6.1\text{‰}$ , respectively. The nitrogen isotopic ranges are generally in agreement with those of terrestrial herbivores from East Asia and the Pacific islands during the Neolithic period (e.g. Hu et al., 2008; Kinaston et al., 2013a; Yoneda et al., 2004). However, their carbon isotopic ranges are wider than other data. The difference is caused by lower  $\delta^{13}\text{C}$  values in muntjacs (mean  $-20.5 \pm 1.4\text{‰}$ ) than in *Cervus* sp. (mean  $-12.1 \pm 2.9\text{‰}$ ). Assuming a mean  $\delta^{13}\text{C}$  value of  $-25.4\text{‰}$  for  $\text{C}_3$  plants (Yoneda et al., 2004) and taking into account a subsequent trophic shift of  $\delta^{13}\text{C}$  values from plant to herbivore bone collagen ( $\delta^{13}\text{C}_{\text{diet}} = \delta^{13}\text{C}_{\text{collagen}} - 5$ , Ambrose and Norr, 1993; Tieszen and Fagre, 1993), a herbivore consuming wholly  $\text{C}_3$  plants should display a  $\delta^{13}\text{C}_{\text{collagen}}$  value of  $-20.4\text{‰}$ . In other words, the muntjacs at the FTY site were eating predominantly  $\text{C}_3$  plants. This result concurs with modern faunal observations that muntjacs occupy broad-leaved forests in Taiwan and consume various forbs and browses, especially *Fatsia polycarpa*, *Schefflera taiwaniana*, *Viburnum luzonicum*, and *Deutzia pulchra* that are classified as  $\text{C}_3$  plants (McCullough et al., 2000).

By contrast, the  $\delta^{13}\text{C}$  values of *Cervus* sp. point to a mixed intake of  $\text{C}_3$  and  $\text{C}_4$  food resources. When the mean  $\delta^{13}\text{C}$  value of  $-10.0\text{‰}$  for  $\text{C}_4$  plant is considered (Yoneda et al., 2004), it is very likely that some individuals of the *Cervus* sp., such as E01h-6 and E01h-35 that displayed

relatively high  $\delta^{13}\text{C}$  values, consumed large amounts of  $\text{C}_4$  plants. Even though the *Cervus* species cannot be identified by the morphological features of the samples, this dietary pattern concurs with the foraging strategies of Formosan Sambar (*Rusa unicolor*) and Formosan sika deer (*Cervus nippon taiouanus*), the other two native deer species in Taiwan. The sika deer are mixed feeders, eating grass, forbs, and browses on the lowlands, marshes, and plains of Taiwan (McCullough, 2009), while sambar deer occupy higher elevation habitats and prefer consuming Poaceae grass and browse (Yen et al., 2014). No detailed information about the plant taxa consumed by the two deer species is available. However, isotopically, it has been shown that there are  $\text{C}_4$  plants in Taiwan, for example, the Poaceae and Cyperaceae species (e.g. Ku et al., 2007; Lin et al., 2007). It is therefore conceivable that the  $\text{C}_4$  isotopic signature enter into the body of sika deer or sambar deer when they search for foods, especially grass.

The mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values for the pigs are  $-14.7 \pm 2.6\text{‰}$  and  $5.9 \pm 1.5\text{‰}$ , respectively. The  $\delta^{13}\text{C}$  values from the samples of pigs and herbivores are comparable, while the  $\delta^{15}\text{N}$  values are significantly higher in pig samples than in the herbivore samples. This could be due to more input from animal protein in the diet of pigs at the FTY site.

When the highest  $\delta^{15}\text{N}$  value of herbivores ( $6.1\text{‰}$ ) is considered as an upper limit, then six pigs with  $\delta^{15}\text{N}$  values lower than  $6.1\text{‰}$  could be viewed as having consumed a plant-based diet (mean  $\delta^{13}\text{C}$  value  $= -14.1 \pm 3.2\text{‰}$  and mean  $\delta^{15}\text{N}$  value  $= 4.6 \pm 0.9\text{‰}$ ). There is no clear offset between both values of the six pigs and the herbivores ( $H = 0.400$ ,  $p = 0.527$  for  $\delta^{13}\text{C}$ ,  $H = 1.039$ ,  $p = 0.308$  for  $\delta^{15}\text{N}$ , Table 5). By contrast, the  $\delta^{15}\text{N}$  values of the other seven pigs are significantly higher than that of the herbivores, though not for  $\delta^{13}\text{C}$  values ( $H = 2.458$ ,  $p = 0.117$  for  $\delta^{13}\text{C}$ ,  $H = 16.379$ ,  $p < 0.001$  for  $\delta^{15}\text{N}$ ), which could be the result of their having more omnivorous diets (mean  $\delta^{15}\text{N}$  value  $= 7.0 \pm 0.7\text{‰}$ ). This result is consistent with a review paper indicating that wild pigs have various foraging behavior, including browsing and grazing (grass, herbs, stems, leaves), foraging on the ground (fruits, fungi, animal matter), rooting (rhizomes, roots, invertebrates), and predation (vertebrates) (Ballari and Barrios-García, 2014). However, the same paper also highlighted that around 90% of the wild pig's diet is plant-based by preference. In addition, the isotopic dietary studies on modern and ancient wild pigs from Europe (Dürrwächter et al., 2006), western Asia (Lösch et al., 2005), northern China (Barton et al., 2009) and Japan (Minagawa et al., 2005) also suggested that the  $\delta^{15}\text{N}$  values of most wild pigs are comparable to herbivores, such as deer, caprids and bovines. As a result, for the seven pigs that displayed higher  $\delta^{15}\text{N}$  values at the FTY site, consumption of leftovers by the humans cannot be ruled out.

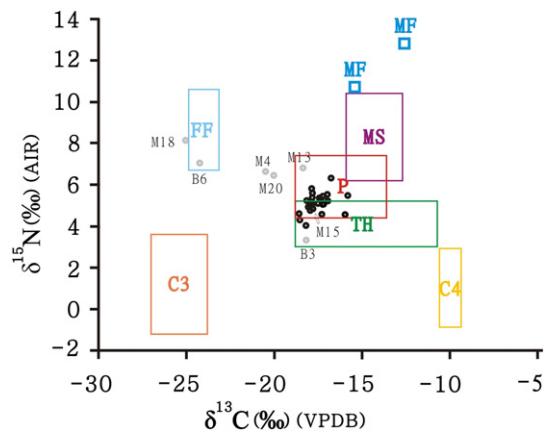
**Table 5**

Statistical result for comparison of isotopic values among (a) age groups and genders, and among (b) faunal species.

Boldface indicates the difference between two groups is significant.

| (a)                         |                  | Adults vs. juveniles    |                       | Male adults vs. female adults                             |                                                            |
|-----------------------------|------------------|-------------------------|-----------------------|-----------------------------------------------------------|------------------------------------------------------------|
| $\delta^{13}\text{C}$ value |                  | H = 1.034, p = 0.309    |                       | H = 0.105, p = 0.293                                      |                                                            |
| $\delta^{15}\text{N}$ value |                  | H = 0.483, p = 0.487    |                       | H = 3.220, p = 0.073                                      |                                                            |
| (b)                         |                  | Cervus sp. vs. muntjacs | Pigs vs. herbivores   | Pigs with low $\delta^{15}\text{N}$ values vs. herbivores | Pigs with high $\delta^{15}\text{N}$ values vs. herbivores |
| $\delta^{13}\text{C}$ value | <b>p = 0.002</b> | H = 9.939, p = 0.277    | H = 2.124, p = 0.145  | H = 0.400, p = 0.527                                      | H = 2.458, p = 0.117                                       |
| $\delta^{15}\text{N}$ value | <b>p = 0.001</b> | H = 1.179, p = 0.277    | H = 11.433, p = 0.308 | H = 1.039, p = 0.308                                      | H = 16.379, p < 0.001                                      |

Only two fish samples were available for this study. There was considerable difficulty in identifying the species or their habitats since the remains were non-diagnostic fish bone or spines. By comparing their isotopic values with that of 41 archaeological marine fish and seven freshwater fish remains derived from other Pacific islands, including French Polynesia, Fiji, New Zealand, Korea and Japan (Choy and Richards, 2009; Field et al., 2009; Jones and Quinn, 2009; Kinaston et al., 2013b; Naito et al., 2010a, 2010b; Richards et al., 2009; Tsutaya et al., 2014; Yoneda et al., 2004), their provenance could be clarified. The  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of the two FTY fish samples fall within the isotopic ranges of 41 marine fish ( $\delta^{13}\text{C}$  values from  $-15.2$  to  $-1.5\text{\textperthousand}$  and  $\delta^{15}\text{N}$  values from  $7.1$  to  $17.3\text{\textperthousand}$ ), but outside that of seven freshwater fish ( $\delta^{13}\text{C}$  values from  $-21.3$  to  $-18.4\text{\textperthousand}$  and  $\delta^{15}\text{N}$  values from  $6.0$  to  $10.5\text{\textperthousand}$ ), which indicates that the two fish samples collected from the FTY site may have been marine fish.


#### 4.2. Human dietary patterns

Of the 32 human individuals analyzed in this study, six were isotopically different from the others, and these six are discussed separately. The mean isotopic values of the remaining 26 human individuals ( $\delta^{13}\text{C} = -12.5 \pm 0.7\text{\textperthousand}$  and  $\delta^{15}\text{N} = 8.1 \pm 0.5\text{\textperthousand}$ ) indicate that their diets derived from a mix of  $\text{C}_3$  and  $\text{C}_4$  foods, and were probably dominated by terrestrial animal protein. To confirm this, the mean isotopic values of human bone collagen were compared with those of faunal bone collagen found at the FTY site. In general, the trophic shift of  $\delta^{15}\text{N}$  values between the collagen of prey and predator is suggested to be  $2\text{--}6\text{\textperthousand}$  ( $\Delta^{15}\text{N}_{\text{predator collagen-prey collagen}} = 2\text{--}6\text{\textperthousand}$ , DeNiro and Epstein, 1981; O'Connell et al., 2012), while the shift of  $\delta^{13}\text{C}$  values is smaller, between  $0$  and  $2\text{\textperthousand}$  ( $\Delta^{13}\text{C}_{\text{predator collagen-prey collagen}} = 0\text{--}2\text{\textperthousand}$ , Bocherens and Drucker, 2003; Lee-Thorp, 2008). The mean  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of the 26 human individuals are approximately  $0.8\text{--}2.2\text{\textperthousand}$  and  $2.2\text{--}4.0\text{\textperthousand}$ , respectively, and are higher relative to those of pigs and herbivores at the FTY site. In consequence, the differences in isotopic values are in agreement with a diet-consumer relationship between humans and terrestrial fauna. This result is supported by the faunal remains as well as by the artifacts for hunting and for meat processing found at the FTY, Luliao, and Huilai sites (Ho, 2003; Ho et al., 2007; Ho and Chu, 2007; Shih and Song, 1956).

By contrast, since the offsets in isotopic values between the 26 human individuals and marine fish samples from the FTY site do not fall within the expected ranges for one trophic level, it seems that marine fish did not greatly contribute to the diets of these individuals, though fish remains were also recovered at the FTY culture sites (Ho et al., 2007; Ho and Chu, 2007; Shih and Song, 1956). Freshwater fish or shellfish appear to have been consumed as well (Ho et al., 2007; Ho and Chu, 2007; Shih and Song, 1956). However, it is difficult to assess the contribution of these two aquatic resources to the diets of the 26 human individuals because no isotopic data of shellfish or freshwater fish were available from the studied area and time period.

Evaluating the contribution of plant resources to the human diets is also difficult since, thus far, no plant remains have been found at the FTY site during the excavation period when recovery techniques such as flotation were not used. However, the finding of harvesting implements and archaeobotanical evidence at the other FTY sites suggest that people of the FTY culture ate some  $\text{C}_3$  plants, as well as rice (Ho, 2003; Ho and Chu, 2007; Shih and Song, 1956).

In order to reconstruct the dietary patterns of the 26 human individuals from the FTY site, Fig. 4 is used to compare the carbon and nitrogen isotopic compositions in the human diet with those in potential food resources (edible part). The isotopic compositions in the human diet are inferred from the collagen values by taking into account the difference in isotopic values between a consumer's bone collagen and his diet ( $\delta^{13}\text{C}_{\text{diet}} = \delta^{13}\text{C}_{\text{collagen}} - 5$ ,  $\delta^{15}\text{N}_{\text{diet}} = \delta^{15}\text{N}_{\text{collagen}} - 3$ ; Ambrose and Norr, 1993; Tieszen and Fagre, 1993). Potential food resources considered here include terrestrial herbivores, pig, marine fish, marine



**Fig. 4.**  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  values of human diet are shown as black/gray dots. Squares represent one sigma range of potential food resources (Table 6).  $\text{C}_3$ :  $\text{C}_3$  plants;  $\text{C}_4$ :  $\text{C}_4$  plants; TH: terrestrial herbivores; P: pigs; FF: freshwater fish; MF: marine fish; MS: marine shellfish. The P, TH, and MF data come from this study, while others are cited from the study of Yoneda et al. (2004).

shellfish, freshwater fish, as well as  $\text{C}_3$  and  $\text{C}_4$  plants. For the previous three food resources, the isotopic ranges for the edible parts, the flesh, are constructed from the isotopic data analyzed in this study by considering the difference in isotopic values between bone collagen and flesh (see Table 6 for details). Due to isotopic data being unavailable in this study, the reported values of archaeological freshwater fish and of the modern counterparts for the other three food resources are cited from a study done in Japan (Yoneda et al., 2004). It should be noted that because the relation between the isotopic values of a consumer's bone collagen and his diet have not been understood thoroughly, this comparison may contain some uncertainties. The possibility of temporal and geographical variability among isotopic dataset (Iron Age Taiwan vs. Neolithic Japan) has to be kept in mind as well.

This rough comparison shows that the dietary patterns of the community at the FTY site, as suggested above, were composed of mainly terrestrial animal proteins (Fig. 4). It seems that the contribution of marine shellfish was significant as well. By contrast, the other food resources were less important, including marine fish, freshwater fish and plants. It remains unclear why freshwater fish were not an important dietary resource at the FTY site, even though the Daan River is nearby. Likewise, there is no isotopic evidence for significant marine fish consumption in spite of the proximity of FTY to the coast. The intake of plants, which are low-protein foods, may be under-estimated by collagen isotopic values, as both carbon and nitrogen elements in collagen, especially the latter one, are directly acquired from dietary protein (Ambrose and Norr, 1993).

#### 4.3. Dietary differences within the population

Six individuals showed diets different from the dietary patterns of the other 26 individuals (Fig. 3). Based on their isotopic values, the six individuals could be subdivided into at least two sub-groups: M4, M13, M18, M20, and B6 in one group and B3 in another. The lower  $\delta^{13}\text{C}$  but higher  $\delta^{15}\text{N}$  values from M18 and B6 can be attributed to a diet dominated by freshwater resources, especially freshwater fish (Fig. 4). M4, M13, M20 also showed a similar pattern but at a smaller degree, which probably points to a mixed diet of freshwater resources and terrestrial animals. The lowest  $\delta^{15}\text{N}$  value, from B3, indicates that this individual consumed less meat than the others.

Several possible explanations are proposed for the dietary patterns observed for these individuals. First, they may have had special status in this community, which allowed them more opportunities to get some particular foods. For example, it has been shown that in some ancient societies, individuals of high social status had higher  $\delta^{15}\text{N}$  values

**Table 6**

Carbon and nitrogen isotope ranges of potential food resources for comparison with the isotope values of human individual's diet.

| Food resources                                     | $\delta^{13}\text{C}$ mean | Corrected $\delta^{13}\text{C}$ | $\delta^{15}\text{N}$ mean | Corrected $\delta^{15}\text{N}$ |
|----------------------------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|
| Data from Yoneda et al. (2004)                     |                            |                                 |                            |                                 |
| Modern terrestrial C <sub>3</sub> – plant (n = 16) | –25.4 ± 1.6 <sup>a</sup>   | –                               | 1.2 ± 2.4                  | –                               |
| Modern terrestrial C <sub>4</sub> – plant (n = 5)  | –10.0 ± 0.5 <sup>a</sup>   | –                               | 1.0 ± 1.9                  | –                               |
| Modern shellfish flesh (n = 13)                    | –14.3 ± 1.6 <sup>a</sup>   | –                               | 8.3 ± 2.1                  | –                               |
| Archaeological freshwater fish (n = 7)             | –20.0 ± 0.9                | –24.0 ± 0.9 <sup>c</sup>        | 8.6 ± 1.9                  | 8.6 ± 1.9 <sup>d</sup>          |
| This study                                         |                            |                                 |                            |                                 |
| Terrestrial herbivores (n = 28)                    | –13.3 ± 4.0                | –14.8 ± 4.0 <sup>b</sup>        | 4.1 ± 1.1                  | 4.1 ± 1.1 <sup>b</sup>          |
| Pigs (n = 13)                                      | –14.7 ± 2.6                | –16.2 ± 2.6 <sup>c</sup>        | 5.9 ± 1.5                  | 5.9 ± 1.5 <sup>c</sup>          |
| Marine fish                                        | –11.4                      | –15.4 <sup>c</sup>              | 10.7                       | 10.7 <sup>d</sup>               |
|                                                    | –8.6                       | –12.6 <sup>c</sup>              | 12.8                       | 12.8 <sup>d</sup>               |

<sup>a</sup> The Suess effect has been corrected for the reported values.<sup>b</sup>  $\delta^{13}\text{C}_{\text{muscle}} = \delta^{13}\text{C}_{\text{collagen}} - 1.5$  for terrestrial animals (Kinaston et al., 2013a).<sup>c</sup>  $\delta^{13}\text{C}_{\text{muscle}} = \delta^{13}\text{C}_{\text{collagen}} - 4$  for fish (Ambrose and Norr, 1993; Beavan – Athfield et al., 2008).<sup>d</sup>  $\delta^{15}\text{N}_{\text{soft tissue}} = \delta^{15}\text{N}_{\text{collagen}}$  (Ambrose and Norr, 1993).

than commoners, which was interpreted as more intake of foods from higher trophic levels, such as animal protein (e.g. Ambrose et al., 2003; Kinaston et al., 2013c). If this was the case in our study, then M4, M13, M18, M20, and B6 could be considered to have high social status, while B3 had low social status. Additionally, freshwater resources may have been the foods for those with high social status in this community. However, without archaeological evidence to indicate social status, the difference in diet revealed here cannot be attributed with certainty to a difference in social status.

Second, these individuals could be non-locals. If this was the case, then they may have originated from at least two different regions. Assuming that the group that includes M4, M13, M18, M20, and B6 originated from the same region, and considering the fact that the turnover rate of adult bone collagen is quite low (Hedges et al., 2007), they may have moved to the FTY site at different stages during their life history. For example, M18 (male adult) may have migrated to this area during later in his life because he retained the initial isotope values that are significantly different from the local signatures at the FTY site. By contrast, the other two male adults, M4 and M13, may have lived a significant proportion of their lives in this area such that the previous isotopic compositions in their bone collagen would have been replaced. Due to the dental extraction feature, M15 could have been an immigrant. However, the isotopic values suggest that M15's diet was not different than that of the others (Fig. 4), thus possibly indicating a local origin. However, from the current stable isotopic result, the possibility either that M15 had migrated and stayed for quite a long time at the FTY site or that she subsisted on a diet similar to that of the natives of the FTY site before migrating there cannot be ruled out.

Third, there could be dietary shift over time at the FTY site. Nevertheless, only archaeological context for 14 individuals analyzed here is available (Shih and Song, 1956; Song, 1962). According to the stratum order of each burial, the 14 individuals could be assigned to several relative chronological groups. The rough comparison showed no considerable temporal trend in either  $\delta^{13}\text{C}$  or  $\delta^{15}\text{N}$  values (Supplementary Fig.), which could give an indication of uniform diet over time at the FTY site. However, it is not certain that the individuals buried in the same stratum belonged to the same chronological phase. Radiocarbon dating for each human individual could help shed light on dietary shift over time (e.g. Atahan et al., 2014).

## 5. Conclusion

The carbon and nitrogen isotope ratios indicate that the human group that lived at Fantzuyuan during the Iron Age mainly consumed terrestrial animals such as pigs, deer, and marine shellfish. Plants contributed little to the diet. The consumption of marine or aquatic fish does not seem to have been important, in spite of the proximity of the site to the river and the coast. The results of this study also indicate a uniform diet for the group, with no differences among age groups and

between genders. However, six individuals may have had special social status or were non-locals, as evidenced by their isotopic compositions, which were different from the others.

Supplementary data to this article can be found online at <http://dx.doi.org/10.1016/j.ara.2017.01.002>.

## Acknowledgements

We are very grateful for the helpful comments of the reviewers and editor. We would like to acknowledge Dr. Mike Buckley of the Faculty of Life Sciences, University of Manchester, for species identification of some samples using ZooMS. We thank Dr. Yun-Ysi Siew of the Academic Sinica for the osteological examinations. We also thank Prof. Chin-Chieh Su and Ms. Ling-Wen Liu of the Institute of Oceanography, NTU, for their kind assistance in the laboratory. This research was funded by the Chiang Ching-Kuo Foundation for International Scholarly Exchange (RG014-D-11: Reconstructing Dietary Systems of Prehistoric Populations in Taiwan from Isotope Analyses on Human Skeletons) and the Oxford Centre for Asian Art, Archaeology and Culture.

## References

- Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. *J. Archaeol. Sci.* 17, 431–451.
- Ambrose, S.H., Norr, L., 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, J.B., Grupe, G. (Eds.), *Prehistoric Human Bone: Archaeology at the Molecular Level*. Springer-Verlag, New York, pp. 1–37.
- Ambrose, S.H., Buikstra, J., Krueger, H.W., 2003. Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. *J. Anthropol. Archaeol.* 22, 217–226.
- Atahan, P., Dodson, J., Li, X.Q., Zhou, X.Y., Chen, L., Barry, L., Bertuch, F., 2014. Temporal trends in millet consumption in northern China. *J. Archaeol. Sci.* 50, 171–177.
- Ballari, S.A., Barrios-García, M.N., 2014. A review of wild boar *Sus scrofa* diet and factors affecting food selection in native and introduced ranges. *Mammal Rev.* 44, 124–134.
- Barton, L., Newsome, S.D., Chen, F.H., Wang, H., Guilderson, T.P., Bettinger, R.L., 2009. Agricultural origins and the isotopic identity of domestication in northern China. *PNAS* 106, 5523–5528.
- Beavan-Athfield, N., Green, R.C., Craig, J., McFadgen, B., Bickler, S., 2008. Influence of marine sources on  $^{14}\text{C}$  ages: isotopic data from Watom Island, Papua New Guinea inhumations and pig teeth in light of new dietary standards. *J. R. Soc. N. Z.* 38, 1–23.
- Bocherens, H., Drucker, D., 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. *Int. J. Osteoarchaeol.* 13, 46–53.
- Chiu, H.L., 2010. The social meaning of ritual tooth ablation behavior in prehistoric Taiwan: a case study at the Shihchiao site from the Iron-Age Niaosung culture. *J. Archaeol. Anthropol.* 73, 1–60 (in Chinese).
- Choy, K., Richards, M.P., 2009. Stable isotope evidence of human diet at the Nukdo shell midden site, South Korea. *J. Archaeol. Sci.* 36, 1312–1318.
- DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. *Nature* 317, 806–809.
- DeNiro, M.J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. *Geochim. Cosmochim. Acta* 45, 341–351.
- Dürrwächter, C., Craig, O.E., Collins, M.J., Burger, J., Alt, K.W., 2006. Beyond the grave: variability in Neolithic diets in Southern Germany? *J. Archaeol. Sci.* 33, 39–48.
- Field, J.S., Cochrane, E.E., Greenlee, D.M., 2009. Dietary change in Fijian prehistory: isotopic analyses of human and animal skeletal material. *J. Archaeol. Sci.* 36, 1547–1556.

Hedges, R.E.M., Clement, J.G., Thomas, C.D.L., O'Connell, T.C., 2007. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. *Am. J. Phys. Anthropol.* 133, 808–816.

Ho, C.K., 1996. *Reviews of Taiwan Prehistoric Cultures*. Daw Shiang Publishing Co., Taipei, p. 165 (in Chinese).

Ho, C.K., 2003. Prone burial of the Fantzuyuan site in Iron Age, central Taiwan. *J. Natl. Mus. Natl. Sci.* 193, 3 (in Chinese).

Ho, C.K., Chu, W.L., 2007. Rescue of Huilai site in Taichung City. *J. Natl. Mus. Natl. Sci.* 240, 3 (in Chinese).

Ho, C.K., Yan, L.D., 2009. Interactions between human groups revealed from Fantzuyuan prone burials in central Taiwan. *J. Natl. Mus. Natl. Sci.* 261, 1–7 (in Chinese).

Ho, C.K., Liu, K.H., Yan, L.D., 2007. Prone burials at the Luliao site, Taichung County. *J. Natl. Mus. Natl. Sci.* 235, 3 (in Chinese).

Hu, Y., Wang, S., Luan, F., Wang, C., Richards, M.P., 2008. Stable isotope analysis of humans from Xiaojingshan site: implications for understanding the origin of millet agriculture in China. *J. Archaeol. Sci.* 35, 2960–2965.

Jones, S., Quinn, R.L., 2009. Prehistoric Fijian diet and subsistence: integration of faunal, ethnographic, and stable isotopic evidence from the Lau Island group. *J. Archaeol. Sci.* 36, 2742–2754.

Katzenberg, M.A., 2008. Stable isotope analysis: a tool for studying past diet, demography, and life history. In: Saunders, S.R., Katzenberg, M.A. (Eds.), *Biological Anthropology of the Human Skeleton*. Wiley-Liss, New Jersey, pp. 413–441.

Kinaston, R.L., Buckley, H.R., Gray, A., Shaw, B., Mandui, H., 2013a. Exploring subsistence and cultural complexes on the south coast of Papua New Guinea using palaeodietary analyses. *J. Archaeol. Sci.* 40, 904–913.

Kinaston, R.L., Walter, R.K., Jacomb, C., Brooks, E., Tayles, N., Halcrow, S.E., Stirling, C., Reid, M., Gray, A., Spinks, J., Shaw, B., Fyfe, R., Buckley, H.R., 2013b. The first New Zealanders: patterns of diet and mobility revealed through isotope analysis. *PLoS One* 8, 1–11.

Kinaston, R.K., Buckley, H.R., Gray, A., 2013c. Diet and social status on Taumako, a Polynesian outlier in the southeastern Solomon Islands. *Am. J. Phys. Anthropol.* 151, 589–603.

Ku, H.W., Chen, Y.G., Chan, P.S., Liu, H.C., Lin, C.C., 2007. Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: a case of coastal Taipei Basin in Northern Taiwan. *Geochem. J.* 41, 111–120.

Lee-Thorp, J.A., 2008. On isotopes and old bones. *Archaeometry* 50, 925–950.

Lin, H.J., Kao, W.Y., Wang, Y.T., 2007. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. *Estuar. Coast. Shelf Sci.* 73, 527–537.

Liu, Y.C., 1999. *Archaeological Sites and Prehistoric Cultures in Taichung*. Taichung Municipal City Cultural Center, Taichung, p. 160 (in Chinese).

Liu, Y.C., 2002. *Prehistoric Cultures and Groups on the Estuary Area of Tamsui River*. Shihhsanhang Museum of Archaeology, Taipei, p. 200 (in Chinese).

Lösch, S., Grupe, G., Peters, J., 2005. Stable isotopes and dietary adaptations in humans and animals at Pre-Pottery Neolithic Nevalı Çori, Southeast Anatolia. *Am. J. Phys. Anthropol.* 131, 181–193.

McCullough, D.R., 2009. Chapter 37: sika deer in Taiwan. In: McCullough, D.R., Takatsuki, S., Kaji, K. (Eds.), *Sika Deer: Biology and Management of Native and Introduced Populations*. Springer Tokyo Berlin Heidelberg, New York, pp. 549–560.

McCullough, D.R., Pei, K.C.J., Wang, Y., 2000. Home range, activity patterns, and habitat relations of Reeves' muntjacs in Taiwan. *J. Wildl. Manag.* 64, 430–441.

Minagawa, M., Matsui, A., Ishiguro, N., 2005. Patterns of prehistoric boar *Sus scrofa* domestication, and inter-islands pig trading across the East China Sea, as determined by carbon and nitrogen isotope analysis. *Chem. Geol.* 218, 91–102.

Naito, Y.I., Honch, N.V., Chikaraishi, Y., Ohkouchi, N., Yoneda, M., 2010a. Quantitative evaluation of marine protein contribution to ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen: an investigation at the Kitakogane Jomon site. *Am. J. Phys. Anthropol.* 143, 31–40.

Naito, Y.I., Chikaraishi, Y., Ohkouchi, N., Mukai, H., Shibata, Y., Honch, N.V., Dodo, Y., Ishida, H., Amano, T., Ono, H., Yoneda, M., 2010b. Dietary reconstruction of the Okhotsk culture of Hokkaido, Japan, based on nitrogen composition of amino acids: implications for correction of  $^{14}\text{C}$  marine reservoir effects on human bones. *Radiocarbon* 52, 671–681.

O'Connell, T.C., Kneale, C.J., Tasevska, N., Kuhnle, G.G.C., 2012. The diet–body offset in human nitrogen isotopic values: a controlled dietary study. *Am. J. Phys. Anthropol.* 149, 426–434.

Pollard, A.M., Ditchfield, P., McCullagh, J.S.O., Allen, T.G., Gibson, M., Boston, C., Clough, S., Marquez-Grant, N., Nicholson, R.A., 2011. "These boots were made for walking": The isotopic analysis of a  $\text{C}_4$  Roman inhumation from Gravesend, Kent, UK. *Am. J. Phys. Anthropol.* 146, 446–456.

Richards, M.P., West, E., Rolett, B., Dobney, K., 2009. Isotope analysis of human and animal diets from the Hanamiai archaeological site (French Polynesia). *Archaeol. Ocean.* 44, 29–37.

Sealy, J., Johnson, M., Richards, M., Nehlich, O., 2014. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. *J. Archaeol. Sci.* 47, 64–69.

Shih, C.J., Song, W.H., 1956. Minor excavation at Tieh-chen-shan. *J. Archaeol. Anthropol.* 8, 35–50 (in Chinese).

Song, W.H., 1962. Human burials at the Fantzuyuan shell mound, Tachia, Taichung. *J. Archaeol. Anthropol.* 19 (20), 83–90 (in Chinese).

Tieszen, L.L., Fagre, T., 1993. Effect of diet quality and composition on the isotopic composition of respiratory  $\text{CO}_2$ , bone collagen, bioapatite, and soft tissues. In: Lambert, J.B., Grupe, G. (Eds.), *Prehistoric Human Bone – Archaeology at the Molecular Level*. Springer-Verlag, Berlin, pp. 121–155.

Tsutaya, T., Naito, Y.I., Ishida, H., Yoneda, M., 2014. Carbon and nitrogen isotope analyses of human and dog diet in the Okhotsk culture: perspectives from the Moyoro site, Japan. *Anthropol. Sci.* 122, 89–99.

Valentin, F., Bocherens, H., Gratzev, B., Sand, C., 2006. Dietary patterns during the late prehistoric/historic period in Cikobia island (Fiji): insights from stable isotopes and dental pathologies. *J. Archaeol. Sci.* 33, 1396–1410.

van Klinken, G.J., 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. *J. Archaeol. Sci.* 26, 687–695.

Yen, S.C., Wang, Y., Ou, H.Y., 2014. Habitat of the vulnerable formosan sambar deer *Rusa unicolor swinhonis* in Taiwan. *Oryx* 48, 232–240.

Yoneda, M., Suzuki, R., Shibata, Y., Morita, M., Sukegawa, T., Shigehara, N., Akazawa, T., 2004. Isotopic evidence of inland-water fishing by a Jomon population excavated from the Boji site, Hagano, Japan. *J. Archaeol. Sci.* 31, 97–107.